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Superposition techniques are used t o  calculate the rate of heat 
t ransfer  from a f l a t  p la te  t o  a turbulent incompressible boundary layer 
f o r  several cases of variable surface temperature. 
a nwnber of these calculations a re  compared with experimental heat- 
t ransfer  ra tes ,  and good agreement i s  obtained. A simple computing 
procedure f o r  determining the heat-transfer ra tes  from surfaces with 
arbitrary wall-temperature distributions i s  presented and i l l u s t r a t ed  
by t w o  examples. The inverse problem of determining the temperature 
distribution from an a rb i t r a r i l y  prescribed heat f lux i s  also treated,  
both experimentally and analytically.  

The predictions of 

INTRODUCTION 

This report is the t h i r d  i n  a series of four covering a three-year 
investigation of heat t ransfer  t o  the turbulent incompressible boundary 
layer with a rb i t ra ry  wall-temperature variation ( re f .  1) .1 In  the f i r s t  
report the experimental apparatus is described, and the resul ts  of ex- 
periments with constant wall terrrperature are given (ref. 3).  The second 
report presents the  resu l t s  of experiments and analyses f o r  a step wa l l -  
temperature dis t r ibut ion ( re f .  4 ) .  In  the present report the step- 
function analysis i s  used as a basis f o r  predicting heat-transfer rates 
fo r  several cases of variable wall temperature, and the  predictions are 
compared with experimental data. A simple method f o r  handling arbitrary- 
wall-temperature problems analyt ical ly  is a l so  presented. The fourth 
report presents an analysis of the effect  of t rans i t ion  point on heat 
t ransfer  i n  the turbulent boundary layer and compares the resu l t s  with 
experiments (ref. 5) .  

'This nonisothermal heat-transfer work is  summarized br ie f ly  in  
reference 2 .  
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Because of the l i nea r i ty  of the  boundary-layer energy equation, the 
heat-transfer character is t ics  f o r  a step wall-temperature dis t r ibut ion 
may be superimposed t o  determine heat-transfer rates fo r  arbitrary-wall- 
temperature si tuations.  
Tribus (ref. 6)  and by Rubesin (ref. 7 ) .  The superposition resu l t s  i n  
integrals tha t  must be evaluated at each point where the heat-transfer 
rate is desired. 
temperature variation is  re la t ive ly  simple, such as l inear ,  parabolic, 
and so forth; but numerical methods are  required fo r  more complex cases. 
One approximate method f o r  t rea t ing  variable-wall-temperature problems 
i s  t o  express the wall-temperature dis t r ibut ion by a f i n i t e  number of 
steps.  However, t h i s  resu l t s  i n  in f in i t e  heat-transfer rates a t  the 
steps and thus does not yield meaningful resu l t s  i n  the region near the 
discontinuities.  A be t t e r  method, short of exact integration, i s  t o  ap- 
proximate the temperature dis t r ibut ion by a f i n i t e  number of l inear  seg- 
ments or "ramps." 
t ransfer  ra tes  a re  everywhere f i n i t e ,  and good resu l t s  can be obtained 
w i t h  re la t ively few ramp segments. This technique i s  described in  the 
present report, and the resu l t s  compare favorably w i t h  experiments. 

This f ac t  has been pointed out by Klein and 

The-integrations are eas i ly  performed i f  the w a l l -  

Since t h i s  approximation i s  continuous, the heat- 

The inverse problem, wherein the  heat-transfer ra tes  are  specified 
and the temperature dis t r ibut ion is t o  be determined, can also be handled 
by superposition of steps or ramps. This problem i s  a l so  discussed i n  
the present report .  

T h i s  investigation was  carried out at  Stanford University under the 
sponsorship and w i t h  the f inancial  assistance of the  National Advisory 
Committee fo r  Aeronautics. 

SYMBOLS 

location of ramp, f t  

height of step, O F  o r  Btu/(hr)(sq f t )  

specific heat at constant pressure, Btu/(lb) (OF) 

function f o r  prescribed heat-flux problem, 
B r  (1/9, 20/9 - Ca/x )Br (1/97 10/9 1 

(l-;) - r(i/g}r(8/9) 

free-stream mass velocity, p x ,  lb/(hr)(sq f t )  

d 
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g(5,x) kernel function f o r  prescribed heat f lux  

B r  (J9, 10/9 ) 
H(2/x) function f o r  prescribed heat-flux problem, 1 - r ( i /g  ) r ( 8/9 ) 

h loca l  heat-transfer coefficient,  q'l/At, Btu/(hr) (sq f t )  (9) 

h(&x) loca l  heat-transfer coefficient a t  x due t o  a s tep temperature 
at  E 

k thermal conductivity, Btu[(hr) ( f t  1 ( O F )  

2 

S t  

StH 

T W  

To3 

t 

At  

At* 

t m  

location of step, f t  

slope of ramp, ?F/ft or  Btu/(hr)(cu f t)  

Prandtl  number, pcp/k 

heat flux, Btu/(hr)(sq f t )  

effect ive q", Btu/(hr)(sq f t )  

Reynolds nuuiber based on x, Gx/p 

function f o r  prescribed temperature problem, 
9/10 -1/9 1 - 1  

l oca l  Stanton number, h/Gcp 

loca l  Stanton number fo r  constant heat input 

l oca l  Stanton number f o r  isothermal p l a t e  

absolute p l a t e  temperature, OR 

aljsolute free-stream temperature, OR 

effect ive At,  %' 

mean temperature of heated s t r ip ,  9 
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Y 

Z 

t m  - tcQ, OF 

pla te  temperature, OF 

f ree  - st ream temperature, OF 

free-stream velocity, f t /sec 

load dis t r ibut ion 

distance from leading edge, f t  

distance from plate,  f t  

variable of integration 

J 

B(a,b) beta function, a’ z a - l ( l  - z ) ~ - ’  dz 

Br(a,b) beta function, a’ za- l ( l  - Z)b-l dz 

00 

r(a) gamma function, f e-zza-l dz = (a-l)! 

CL viscosity, lb / (hr ) ( f t )  

E variable of integration 

P density, lb/cu f t  

cp beam deflection, in. 

w beam influence coef f ic ien t  , i n  ./lb 

QUALITATIVE EPF%CTS OF VARLABLE WALL TENPERATWE 

P a a 
tP 

Until quite recently, pract ical ly  a l l  investigations of boundary- 
layer heat transfer treated the special  case of constant surface temper- 
ature.  Although the assumption of constant temperature greatly simpli- 
fies analysis, many important systems involve heat t ransfer  from non- 
isothermal surfaces, and failure t o  consider the e f fec ts  of the noniso- 
t h e m l i t y  can often lead t o  serious errors i n  calculated heat-transfer 
rates. 
thermal problem, and the calculation of heat-transfer rates is now es- 
sen t ia l ly  mathematical. 

Recent e f fo r t s  have provided methods f o r  t rea t ing  the noniso- 
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Before investigating the details of calculation of heat-transfer 
ra tes  from n o n i s o t h e m l  surfaces, it is  desirable t o  obtain a qualita- 
t i v e  understanding of the way non i so theml i ty  might be expected t o  in- 
fluence the heat t ransfer .  This can be best achieved by examining the 
"history" of the boundary layer and considering the qual i ta t ive e f fec t  
of events upstream on the temperature prof i le  i n  the boundary layer.  
While these remarks apply t o  a heated plate,  they may readily be extended 
t o  a cooled plate .  

If the p la te  i s  at constant temperature, the temperature prof i les  
a t  different  points on the  p la te  w i l l  have the  same general shape and 
w i l l  appear as shown i n  sketch (a). 
portional t o  the heat-transfer rate. 

The slope at  the w a l l  w i l l  be pro- 

I .- 

If the p la te  temperature increases i n  the flow direction, the tempera- 
ture  prof i les  w i l l  tend t o  be more drawn out, as indicated i n  sketch (b) . 
The gradient at  the w a l l  w i l l  therefore be steeper, and the heat-transfer 
coefficient w i l l  be greater than i f  the p la te  w e r e  a t  constant 
temperature. 

" f 



6 

I f ,  on the other hand, the w a l l  temperature decreases i n  the f l o w  direc- 
t ion,  the prof i les  w i l l  tend t o  be l e s s  drawn out, as  shown i n  sketch 
(e ) .  The gradient a t  the wall w i l l  therefore be less, and the heat- 
t ransfer  coefficient l e s s  than if  the plate were a t  constant temperature. 

Y 

I n  fac t ,  it i s  conceivable that, if  the wall temperature decreased f a s t  
enough, the prof i le  could be so dis tor ted that the heat-transfer r a t e  
would be zero a t  some point, even w i t h  a f i n i t e  over-all temperature dif- 
ference. In  such a case the temperature prof i le  would appear as follows: 

I 

t c 
00 

t I 

5 
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P 
CD 
CD 
P 

Moreover, decreasing the w a l l  temperature even f a s t e r  could resu l t  i n  a 
complete reversal  of the prof i le  near the wall (sketch (e ) ) ,  i n  which 
case the heat t ransfer  would be negative, w i t h  a posit ive over-all tem- 
perature difference. 
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I -  

It is  a l so  possible tha t  decreasing the temperature difference even 
f a s t e r  could lead t o  f i n i t e  negative heat t ransfer  w i t h  a zero tempera- 
tu re  difference: 

It is evident from these considerations that the nonisothermality 
may have a profound influence on the shape of the temperature prof i les  
in the boundary layer and consequently may greatly influence the heat 
t ransfer .  
i s  of great importance. It should a l so  be noted that the heat-transfer 
r a t e  need not always be "in phase" w i t h  the  wall-temperature variation. 
I n  general, however, the following i s  t rue  ( i f  

Moreover, it i s  clear  that the "history" of the boundary layer 

%> t,): 

(1) A decreasing temperature difference leads t o  heat-transfer rates 
that are lower than those f o r  an isothermal plate .  

(2)  An increasing temperature difference leads t o  heat-transfer 
ra tes  that are higher than those f o r  an isothermal plate .  

With the e f fec ts  of thermal history well in m i n d ,  the  calculation of 
heat t ransfer  from nonisothermal surfaces becomes purely a mathematical 
matter. 
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THEORY AND ANALYSIS 

Review of Theory 

The methods f o r  determining heat t ransfer  from nonisothermal sur- 
faces are similar t o  the methods used in  determining the deflection of 
beams subject t o  a rb i t ra ry  load distributions.  The energy equation of 
the boundary layer i s  l inear  i n  the f l u i d  temperature i f  f l u i d  properties 
a re  assumed t o  be constant. T h i s  allows superposition 'techniques t o  be 
employed. 
a rb i t ra ry  wall-temperature variation can be determined by superimposing 
a number of "step wall-temperature distributions,  so that  summation of 
the steps yields the  ac tua l  variable temperature distribution, and the 
heat-transfer rate a t  any point i s  equal t o  the sum of the heat-transfer 
rates a t t r ibu tab le  t o  a l l  "steps" upstream of the point i n  question. 
This idea of superposition is  i l l u s t r a t ed  i n  figure 1, where the super- 
position of temperature steps i s  compared w i t h  the superposition of point 
loads used i n  beam-deflection problems. It i s  evident t ha t  a satisfac- 
tory solution f o r  a step wall-temperature dis t r ibut ion i s  required before 
any attempt can be made t o  handle the variable-temperature problem, and 
such a solution f o r  turbulent incompressible flow over a f la t  p la te  w i t h  
a step wall-temperature dis t r ibut ion i s  presented i n  reference 4. 

Rubesin (ref. 7 )  has shown tha t  the heat-transfer r a t e  fo r  an 

I t  

It is  convenient a t  t h i s  point t o  introduce some new notation. 
Since the temperature dis t r ibut ion along the heated p la te  may be thought 
of as a function of the  distance fromthe leading edge x, one may write 

A t  = At(x )  

On the  other hand, the temperature dis t r ibut ion can always be represented 
by some algebraic expression involving 
function of several parameters. Then one m i g h t  prefer t o  denote the tem- 
perature difference more completely by 

x, and t h i s  expression may be a 

A t  = A t  [a1, a2, a3, 

where the a i  a re  the  parameters i n  the functional description of the 
temperature difference. They m i g h t  be the coefficients i n  a power series 
expansion, the locations of discontinuities, or some other parameters. 
Hereafter the parameters w i l l  always be listed before the important vari-  
able, which i n  this .  case i s  x. If only one symbol appears i n  the paren- 
theses, it w i l l  r e f e r  t o  the important variable; and the f ac t  that the  
function depends on the  parameters a1 t o  i s  t o  be understood. 
Thus, f o r  a step wall-temperature distribution, the  heat-transfer coef- 
f i c i en t  may be writ ten as h(Z;x), where 2 i s  the location of the dis- 
continuity, or  merely as 
context that the coefficient re fers  t o  the step dis t r ibut ion case. 

h(x), where it i s  t o  be understood from the 

I 

J 
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It is also convenient t o  compare the loca l  rate of heat t ransfer  
from a p la te  having variable wall temperature with the rate that w i l l  

j occur i f  the surface temperature i s  constant at  i t s  loca l  value from the 
start of the plate .  
loca l  Stanton number f o r  an isothermal p la te  by 
Stanton number is  a function of x 
the parameters characterizing the nonisothermal problem. 
StT(x) w i l l  sometimes be used t o  emphasize th i s  point. 
Stanton number may be taken from any suitable expression f o r  the Stanton 
number fo r  heat t ransfer  from a p la te  at constant temperature. 
ample, f o r  heat t ransfer  t o  a gas i n  the turbulent incompressible bound- 
ary layer, the isothermal Stanton number m y  be determined from 

For t h i s  purpose it is convenient t o  denote the 
StT. The isothermal 

only and does not depend on any’of 
The notation 

The isothermal 

For ex- 

Reference 3 shows that  t h i s  re la t ion i s  sat isfactory fo r  gases i n  the 
Reynolds number range lo5 Rex < lo7. In  using equation (l), the 
f lu id  properties i n  the Stanton, Praadtl, and Reynolds numbers are eval- 

provides the temperature-dependent fluid-property correction. 
uated a t  the free-stream s t a t i c  temperature; the factor  (TW/Tm) -0.4 

The step wall-temperature dis t r ibut ion case, which i s  the en t i re  
basis f o r  superposition in  arbitrary-wall-temperature problems, i s  
treated i n  reference 4. 
written as 

The step wall-temperature dis t r ibut ion may be 

A t  = At(2;x) = 0 

A t  = At(2;X) = At0 

x c 2  

x > 2  

Reference 4 shows tha t  the corresponding heat-transfer rate m y  be repre- 
sented by 

The heat-transfer coefficient f o r  the step case i s  therefore 

Following the methods of Klein and Tribus ( re f .  6 ) ,  one can superimpose 
an in f in i t e  number of small steps. This results in  heat-transfer rates 
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from the nonisothemnal surface given by the  following integral  
expression: 

Here the kernel function h(e,x) is, from equation ( Z a ) ,  

Note t h a t  the terms 
in  equation (31, since the integration is  performed over the variable 6 .  
It should be noted that the integral  of (3) must be taken in  the  
"St ie l t jes"  sense ( r e f .  8) ra ther  than i n  the ordinary "Riemann" o r  
"area" sense. 
may have a f i n i t e  discontinuity, so tha t  dt, i s  undefined a t  some 
point. The S t i e l t j e s  integral  may, however, be expressed as the sum of 
an ordinary or Reima;nn integral  and a term tha t  accounts fo r  the e f fec t  

GCpstT(X) may a l l  be brought outside the integral  

This must be done because the  prescribed wall temperature 

of the f i n i t e  discontinuities.  The integral  
writ ten as ( r e f .  8)  

(St i e l t  jes ) (Riemann ) 

of equation (3) m y  be 

n=l 

( 5 )  

where [tw(Zi) - t w ( Z i ) ]  denotes the temperature rise across the 
discontinuity i n  the  wall temperature. 
i l l u s t r a t ed  later by several examples. 

nth 
The use of equation (3) w i l l  be 

Equation (3) is  useful if  the wall-temperature dis t r ibut ion i s  pre- 
scribed and the heat flux is  t o  be calculated. 
problem is the case i n  which the heat f lux i s  given and the wall temper- 
ature is t o  be found. 
w a l l  temperature may be determined from 

An equally important 

Again following Klein and Tribus ( re f .  6), the  
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the nature of the integrand of equation ( 6 ) ,  the integration 
be performed i n  the usual "Riemann" sense. The use of equa- 

t i on  (6 ) - in  problems where the heat flux is  prescribed w i l l  be i l l u s -  
trated later by examples. 

Functions of In te res t  

I n  the solution of various arbitrary-wall-temperature problems, 

O f  
integrals are frequently encountered tha t  cannot be integrated i n  closed 
form, but they are well known and m y  be determined from tables .  
par t icular  in te res t  here is  the beta function, defined by ( re f .  9)  

.. 
The beta function is a function of two arguments, a and b, and i s  not 
tabulated as such. It is, however, related t o  gamma functions by the 

m re lat ion (ref. 9) 

The gamma function is  another integral  but i s  a 
only, and tables  of th i s  function are available 
that B(a ,b)  = B(b,a). 

function of one argument 
(e.g., ref. 10). Note 

More properly, the beta function defined previously i s  referred t o  
The incomplete beta function i s  a lso of as the complete beta function. 

interest ,  and it i s  defined by 

B-,-(a,b) =lr za-'(l - z ) ~ - '  dz 

Note that  the  complete beta function is The incomplete beta 
function is  tabulated, but not f o r  arguments of in te res t  i n  nonisothermal 
boundary-layer calculations. A number of incomplete beta functions of 
interest  i n  turbulent heat-transfer analysis have been determined as a 
par t  of the current work. 
are plot ted i n  f igure 2. 
ence 11 f o r  similar tabulations of incomplete beta  functions f o r  both 
laminar and turbulent flow over a f la t  plate. 

Bl(a,b). 

These functions are given i n  tab le  1 and 
In  addition, the reader i s  referred t o  refer- 

In calculating the  
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integrals  use w a s  made of the symmetry 
function (ref. 12) 

Br(a,b) = Bl(”,b) 

property of the incomplete beta 

Bl-r(b,a) (8d) 

and the relat ion of the incomplete beta function t o  the hypergeometric 
function (ref. 12) 

Br(a,b) = a ra F(a,l-b;l+a;r) C8e 1 

where the hypergeometric function i s  a well-known series. 
computer was used t o  calculate the hypergeometric functions and the in- 
complete beta functions. 

An I B M  650 

Some Special Nonisothermal Heat-Transfer Calculations 

To i l l u s t r a t e  the  methods of superposition previously discussed, 
several examples of variable w a l l  temperature and variable heat flux 
have been worked out i n  detail.  These examples i l l u s t r a t e  not only the  
methods of calculation, but a l so  several interest ing aspects of noniso- 
thermal heat t ransfer .  The resu l t s  of these calculations are summarized 
i n  table 11. 

Constant heat input. - The temperature dis t r ibut ion along a f l a t  
p la te  at  constant heat input may be determined from the theory of 
variable-wall-temperature heat t ransfer .  
is, from equations (6)  and ( 7 ) ,  

The temperature dis t r ibut ion 

Sett ing z = 1 - (</x)’/lo reduces 

11 

(sa) t o  

J 

The integral  of (9b) is  recognized as a complete beta function, and 
theref ore 

ti 
c 
c 
d 
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Putting (loa) in to  dimensionless form gives 

- -  StH - 1.043 
StT 

where StH denotes the loca l  Stanton number f o r  constant heat input. 
This indicates that the loca l  heat-transfer coeff ic ient  for constant 
heat input i s  4.3 percent greater than that for constant w a l l  tempera- 
t u re  at any given location on the p la te .  

Ramp w a l l  temperature. - Consider the "rampr1 wall-temperature dis- 
t r ibu t ion  as shown i n  sketch (g): 

The w a l l  temperature is  given by At(x) = mx, where m is the  slope of 
the w a l l  temperature, Ut/&. Substi tuting i n  equation (3), 

By l e t t i n g  z = 1 - (E/x)'/~O, the in tegra l  of (11) reduces t o  a complete 
beta function and leads t o  

Since mx 
be writ ten as 

i s  sinrply the loca l  temperature difference, equation (12)  may 

S t  - = 1.134 
StT 
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Hence, t he  heat-transfer rate is 13.4 percent greater than would be pre- 
dicted from the equation f o r  a constant-temperature plate .  d 

Step-ramp w a l l  temperature. - Consider the wall-temperature distri- 
bution indicated i n  sketch (h): 

The heat-transfer rate f o r  t h i s  wall-temperature dis t r ibut ion may be de- 
termined by superimposing the heat-transfer rates f o r  a s tep a t  the lead- 
ing edge and a ramp from the  leading edge. Thus, from equations (4)  and 
(12 1 I 

q"(x) = G%St$to + 1 . 1 3 4 G c p S t ~  

which may be writ ten as 

Note tha t ,  as A t & x  
bined step-ramp temperature dis t r ibut ion approaches that of the  simple 
ramp (eq. (12a)), and as 
approaches that of the isothermal p la te .  
behavior. 

approaches zero, the Stanton number fo r  the com- 

Ato/mx becomes very large, the  Stanton number 
This i s  the expected l imit ing 

The step-ramp example i l l u s t r a t e s  several interest ing features of 
nonisothermal heat t ransfer  that  were mentioned earlier. For example, 
if  t he  temperature difference increases with 
rates w i l l  be higher than the isothermal rates. 
decreasing temperature difference (m < 0) leads t o  lower heat transfer;  
i n  fac t ,  zero heat t ransfer  may be obtained at  some point w i t h  a f i n i t e  
a temperature difference, and f i n i t e  heat t ransfer  at some point w i t h  a 
zero temperature difference. Physically, these s i tuat ions arise because 
the  energy and consequently the temperature i n  the boundary layer depend 
strongly upon the "history" of the  layer.  

x(m > 0), the heat-transfer 
On the other hand, a 

For examgle, i f  the  
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temperature difference decreases (the plate  being heated), the f l u i d  
near the w a l l  i s  hot ter  than it would have been if  the p la te  temperature 
had been constant at  its loca l  value from the start. This means that 
the temperature gradient a t  the wall i s  less ,  and consequently the heat 
t ransfer  i s  lower, than the  isothermal values. 

Delayed ramp w a l l  temperature. - Another case of special  in te res t  
i s  that where the temperature difference is  zero over part  of the plate 
and then varies l inearly,  as shown in sketch (i): 

The temperature difference is  given by 

A t  = 0 x < a  

At = m(x - a> x > a  

Again using equation (3) ,  

Letting z = 1 - (5/x)9/10, the integral  of equation (15) reduces t o  an 
incomplete beta function. This leads t o  the following resul t :  

(16 1 10 q”(X) = 9 GC~St~(x)mxB~(8/9,10/9> 

where r = 1 - (a/~)’/’~. This resu l t  i s  of u t i l i t y  i n  approximate so- 
lutions of variable-temperature problems, as i s  shown l a t e r .  

Constant temperature followed by adiabatic wall. - Consider the 
case where the front par t  of the plate i s  held at constant temperature 
and the reminder  of the p la te  i s  insulated, so tha t  the heat t ransfer  
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is  zero. The w a l l  temperature i s  shown in sketch ( j ) :  

This case i s  of i n t e re s t  i n  the  de-icing of a i r c r a f t  wings, where the  
leading edge can be heated and the warm boundary layer used t o  m e l t  the 
ice  from the a f t  portion of the  wing. Sirailar techniques would be use- 
f u l  i n  the  cooling of high-speed a i r c r a f t  and missiles. 

This problem must be treated as a "specified heat input" problem. 
The heat flux over the isothermal portion can be computed fromthe defi-  
n i t ion  of StT: 

q" ( E  = GcpStT( E )At0 x < a  (17 

The heat input is zero fo r  x > a. Then, using the  f ac t  that  stT(6) 
varies as E - O s Z  
from equation (63 as 

the  temperature of the  adiabatic w a l l  may be determined 

BY l e t t i n g  z = ( E /  X ) ~ / ~ O ,  the  in tegra l  of (18) can be reduced t o  an 
incomplete beta function, leading t o  

- -  A t  Bs(8/g,1/9) 
Ato - r (8/9)r( i /g)  

where s = ( ~ / x ) ' / ~ O .  
mine the "adiabatic decay temperature" (At)  from the isothermal heat- 
t ransfer  equation, and that n o n i s o t h e m l  theory is essent ia l  i n  the 
solution of t h i s  problem. 

It should be noted t h a t  there  is  no way t o  deter- 
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’si = b 
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The wall-temperature dis t r ibut ion rate may be determined from equation 
(6) as follows: 

BY l e t t i n g  z = 1 - (~/x)9/10, equation (zoa) integrates t o  give 

where r = 1 - (Z/x) 9/10 . 

Delayed ramp heat input. - Consider a f l a t  plate subjected t o  a 
“delayed ramp” heat input, as shown i n  sketch (I):  

The temperature dis t r ibut ion f o r  t h i s  specified-heat-input problem can 
be determined using equation (6), which leads t o  
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which, by appropriate substitution, reduces t o  

where r = 1 - (a/x)'/lo. 
mate treatment of variable-heat-flux problems, as is  described later. 

This resu l t  is  a l so  of in te res t  i n  the approxi- 

Approximate Methods f o r  Handling Problems of 

Variable W a l l  Temperature and Heat Flux 

I n  many cases the prescribed wall-temperature diskribution or heat 
f lux w i l l  be such that the integrals result ing from the superposition 
methods cannot readi ly  be evaluated in  closed form. I n  such cases a 
long and tedious numerical integration i s  required fo r  each point a t  
which the heat t ransfer  is t o  be calculated. It is evident that  a s u i t -  
able approximate technique f o r  rapid calculations would be extremely 
useful. 
t o  approximate the wall-temperature or heat-flux distribution. 
th i s  leads t o  in f in i t e  heat-transfer rates a t  the discontinuities.  A 
more sat isfactory method i s  t o  superimpose a number of "ramps" t o  approx- 
imate the temperature o r  heat-flux distribution. Generally, a re la t ive ly  
f e w  ramps can be used t o  obtain an excellent approximation t o  any type 
of prescribed dis t r ibut ion.  Furthermore, since no discontinuities i n  
temperature occur, no i n f i n i t i e s  i n  the heat-transfer rates w i l l  be ob- 
tained when ramps are used. The method of superposition of a number of 
delayed ramps is  indicated by figure 3. Note that each ramp extends in- 
def ini te ly  downstream from the point of i t s  origin.  Any discontinuities 
i n  the prescribed dis t r ibut ion can be accounted f o r  by adding a step, as 
is  indicated by f igure 3. 
out and compared with experiment later. 

One possible method i s  t o  superimpose a f i n i t e  number of steps 
However, 

Numerical examples of t h i s  method are worked 

The method indicated is similar t o  that described recently i n  ref- 
erence 13, i n  which some integrals of in te res t  i n  laminar and turbulent 
variable-temperature problems are compxbed and a concise computation pro- 
cedure is  presented. Computations are given f o r  the resu l t  of both Rubesin 
(ref. 7 )  and Sebm (ref 14), the latter of which is similar t o  the resu l t  
of the present investigation. The present scheme has the advantage that 

P 
U 
U 
tf 
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the computing equations have been put i n  a form where loss of significant 
figures due t o  subtraction of numbers of the same order of magnitude i s  
minimized. Moreover, the present method allows steps t o  be used i n  addi- 
t i on  t o  ramps, while i n  the  method of reference 13 the dis t r ibut ion must 
be approximated en t i r e ly  by ramps. Moreover, reference 13 treats only 
problems of prescribed wall temperature, while the present work allows 
calculation of both prescribed temperature-distribution and prescribed 
heat -f lux problems. 

The approximation of the temperature or  heat-flux dis t r ibut ion by 
ramps and steps may be represented mathematically by the expression 

Here % i s  the slope of the nth ramp and has the  dimensions of OF/ft 
[or Btu/(hr)(cu f t ) ) ,  and an i s  i t s  s t a r t i ng  point; b -  i s  the height 
of the  jth step and has the dimensions OF (or Btu/(hrj(sq f t ) ) ;  N and 
J are the number of ramps and steps, respectively, which begin upstream 
of the given location x. 
the slope of the approximate dis t r ibut ion a t  any point i s  the sum of the 
slopes of a l l  ramps s t a r t i ng  upstream of that  point. 
the slope of the curve of temperature against distance at  the  point 

Differentiation of equation (22)  shows that 

Thus, i f  M(x) i s  
x, 

N 
dT - (x) = M(x) = 
dx n=l 

Equation (23) allows calculation of t he  slopes of the component ramps. 
The step height b j  i s  simply the  rise across the step and may be cal-  
culated by a single subtraction. 
been selected, rmps and steps may be drawn i n  and their  parameters 
evaluated by a small amount of arithmetic. 

Thus, once the "break points" have 

Prescribed temperature-difference problems. - I f  the temperature 
difference is  represented as the sum of a number of ramps and steps, 
the  heat-transfer rate i s  simply the sum of the heat-transfer rates due 
t o  the component ramps and steps. Therefore, from equations (16) and 
(41, 

N 

n=l  

$ b j L -  

j=1 
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is the location of the jth step, and rn = 1 - (a,//x)9l? 2 j  
where 
For calculation purposes, it i s  convenient t o  rewrite equation (24) i n  a 
different form. In  order t o  do th i s ,  two new functions are defined: 

and 
9/10 -119 

s(i) = [l - (;) ] - 1 

Then, by using equation (221, equation (24) becomes 

q"(x) = GcpStT(x) 
n= l  

This form of the computing equation has the  advantage that the loss of 
significant f igures due t o  subtraction of numbers of the  same order of 
magnitude is  re la t ive ly  small. It a l so  allows d i rec t  comparison w i t h  
w h a t  would be predicted from the  isothermal-plate re la t ion (eq. ( Z ) ) ,  
namely 

The ef fec t  of the nonisotherrnality is  then concentrated en t i re ly  in  the 
summation terms. I n  order t o  s h p l i f y  the form, an effect ive tempera- 
tu re  difference" At* can be defined as 

I f  

This allows equation (27)  t o  be written as 

q"(x) = GcpStT(x)At* 

The relat ions developed allow rapid calculation of heat-transfer 
rates i n  prescribed wall-temperature-difference problems. 
functions, A and S, are tabulated i n  table I11 and shown in  figure 4. 
An example of calculation of the heat-transfer rate fo r  a prescribed 
teIlzperature dis t r ibut ion is  presented later. 

The computing 

Prescribed heat-flux problems. - Prescribed heat-flux problems m y  
be handled i n  the same manner as prescribed temperature-difference 

4 

5. 

tF 
U 
U 
tF 
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problems, making use of the solution f o r  a delayed ramp heat flux ( 2 2 ) .  
Denoting qL(x) a s  the  heat f lux due t o  the nth ramp and q'!(x) as 
tha t  due t o  the step heat input, equation (6) may be m i t t e n  as 

J 
jth 

Exchanging the order of integration and summation gives 

But the integrals  of (32)  are merely those for single ramps and steps; 
therefore, from (20) and (221, 

(33 1 
where rn = 1 - ( ~ n / x ) ~ / ~ O ,  and r j  = 1 - [ Z ~ / X ) ~ / ~ O .  Equation (33) may 
be put i n  a more useful form fo r  computation by introducing two new 
f unct ions : 

and 

Then, using equation (22}, equation (33) may be written as 

where 
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and 
f e c t s  of t he  nonisothermality are a l l  concentrated i n  the  swnmation 
terms. 
ferences i n  prescribed heat-flux problems. A numerical example of the 
use of equation (37) i s  included later with experimental ver i f icat ion.  
The functions D and H are tabulated in tab le  I V  and shown by f igure 5. 

q* represents an I1 effective heat-transfer rate," in which the  ef- 

Equations (36) and (37) may be used t o  calculate temperature d i f -  

IXEXXJLTS AND DISCUSSION 

Comparison of Theory and Ekperiment 

Experiments have been performed f o r  several  cases of variable w a l l  
temperature and heat f lux.  
heated p l a t e  with an act ive flow length of about 5 feet b u i l t  up with 24 
individually heated s t r i p s .  Within control l imitations,  any desired w a l l -  
temperature or heat-flux d is t r ibu t ion  could be obtained. 
tested in the  7-foot-diameter free-jet GuggenheFm w i n d  tunnel at  Stanford 
University. 
This apparatus is  described in d e t a i l  i n  reference 3. 

The test  apparatus consisted of a large 

The p l a t e  was  

A i r  ve loc i t ies  up t o  130 f e e t  per second were employed. 

The data  from these tests have been compared with predictions ob- 
tained from nonisothermal theory. 
thermal Stanton rimer StT was  computed from the re la t ion  

I n  a l l  of these predictions, t he  iso- 

StTProo4 = 0.0296Rex -0.2(%y0-4 

In  using t h i s  re la t ion,  a l l  f l u i d  properties are evaluated at  the  free- 
stream s t a t i c  temperature, and the  fac tor  (Tw/T,) mO.4 i s  a temperature- 
dependent fluid-properties correction. 
the behavior of t he  nonisothermal surfaces haxe been made employing both 
the  step-function analysis presented in reference 4 and an earlier anal- 
y s i s  due t o  Rubesin (ref. 7 ) .  

For comparisoq, predictions of 

Constant heat input. - Four test runs were made in which the heat 
f lux  w a s  held constant. These data are tabulated i n  table V ( a )  and are 
shown on figure 6. The data are compared with the  isothermal-plate cor- 
re la t ion  (eq. (38) ) the  constant-heat-input predictions of the  present 
analysis (eq. (lob)), and the  constant-heat-input prediction of Rubesin 
(ref. 7 ) .  Since the  Stanton nurnber f o r  a surface with constant heat 
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input is  only about 4 percent greater than that for  constant w a l l  t e m -  
perature, the experimental uncertainty largely masks the predicted d i f -  
ference. A t  the start of the p la te  the data appear t o  be closer t o  the  
constant-temperature correlation; t h i s  is because the  s t r i p s  are long 
re la t ive  t o  the flow length, and each s t r i p  is  essent ia l ly  at constant 
temperature. Farther downstream, where the  s t r i p  length is  s m a l l  corn- 
pared with the flow length, the data agree very w e l l  with the constant- 
heat - input predict ion, 

The prediction of Rubesin (stR/stT = 1.06) appears t o  be s l igh t ly  high 
over the en t i r e  test  range. 

Double-step w a l l  temperature. - One test run w a s  made for  which the  
wall-temperature dis t r ibut ion was a "double step, a discontinuity in  the  
wall temperature occurring in  the  center of t he  p la te .  
tabulated i n  table V(b) and shown i n  figure 7.  Over the  f irst  portion of 
the plate,  where the  p la te  i s  a t  constant temperature, the predictions of 
the present analysis and of Rubesin ( re f .  7 )  are identical .  After the 
discontinuity, Rubesin's analysis i s  high, while the prediction of the 
present analysis i s  quite good. 
determined by adding the rates due t o  the step at  the  leading edge t o  
those due t o  the s tep  downstream. 

These data a re  

The predicted heat-transfer rates were 

Step-ramp w a l l  temperature. - One test run was made i n  which the 
w a l l  temperature was varied l inear ly  from the leading edge. 
control limitations, it was necessary t o  have a small step in  the w a l l  
temperature at  the leading edge. The data from t h i s  run are tabulated 
i n  table V(c) and shown in  figure 8. The l i n e a r i t y  of the  w a l l  tempera- 
tu re  was quite good. The heat-transfer data are compared with the pre- 
dictions from the present analysis, with the result of Rubesin ( re f .  7 ) ,  
and with what would be obtained from use of the  uncorrected isothermal- 
p la te  correlation (eq. (38)), employing the loca l  temperature difference. 
The predictions of the present analysis, which were determined from equa- 
t i on  (13), agree very well with the experimental values. 
predictions based on the analysis of Rubesin a re  high, while the iso- 
thermal re la t ion (38) predicts heat fluxes tha t  are s l igh t ly  low. 
ever, the ramp obtainable with the  experimental apparatus was  not very 
steep, and thus the effect  of the nonisothermality is not as great as 
might be obtained (see eq. (14) ) . 
t ion  (38) and the loca l  temperature differences gives resu l t s  tha t  m y  
well be sat isfactory as f i r s t  approximations f o r  engineering design 
calculations . 

Because of 

The heat-flux 

How- 

In fac t ,  use of the isothermal equa- 

Constant temperature followed by adiabatic w a l l .  - One test  run w a s  
made in  which the forward par t  of the plate  was  held at  constant tempera- 
ture  and the power was turned off on the last 1 2  s t r i p s .  The data from 
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t h i s  run are tabulated in  tab le  V(d) and shown by figure 9. 
-le, the  hot a i r  flowing over the unheated portion of the p la te  warms 
the  plate ,  and the r e su l t  of interest  is the wall-temperature distribu- 
t i on  downstream of the discontinuity i n  heat flux. This s i tuat ion i s  of 
in te res t  i n  the de-icing of wings, where the  leading edge may be heated 
and the  hot a i r  used t o  m e l t  the  ice from the  a f t e r  portion of the wing. 
Similar techniques are  of in te res t  i n  the cooling of missiles, where the 
front  of the m i s s i l e  is cooled and the cold boundary layer is used t o  
cool the  rearward sections. The data a re  compared with the temperatures 
predicted by the present analysis (eq. (19)) and a s i m i l a r  equation ob- 
tained from the Rubesin analysis ( r e f .  7 ) .  Again the Rubesin prediction 
is high, while the agreement between the data and the present analysis 
i s  qui te  good. The measured temperatures are expected t o  l i e  s l i gh t ly  
higher than the predictions because of conduction i n  the t e s t  p la te .  
This conduction e f fec t  i s  greatest just  downstream of the  discontinuity 
in  heat flux, and agreement of the data with the predicted temperature 
dis t r ibut ion i s  poorest i n  t h i s  region. The over-all agreement of the 
data with predictions is considered quite sat isfactory.  

I n  t h i s  ex- 

Double-pulse heat input. - One t e s t  run was made w i t h  a double or 
step heat-flux dis t r ibut ion.  The data f r o m  t h i s  run are tabulated in  
table V ( e )  and shown by figure 10. Because of conduction in the plate ,  
it was not possible t o  obtain sharp discontinuities in  the heat flux, as 
the data indicate.  I n  making the predictions fo r  the wall temperature, 
the actual  nonperfect pulses were approximated by perfect pulses, so  that  
the t o t a l  heat t ransfer  was the saQe. The approximate pulses are indi- 
cated in  figure 10 

The predicted temperatures were determined by superposition of three 
steps of heat input, using the step heat-input resu l t s  (eq. ( 2 0 ) ) .  The 
agreement between the  predicted and experimental temperatures is  excel- 
l en t ,  except near t he  ends of the pulses. 
sidered quite sat isfactory.  

The over-all agreement i s  con- 

I r regular  w a l l  temperature. - One t e s t  run was  made i n  which an ex- 
tremely irregular wall-temperature dis t r ibut ion w a s  maintained i n  the 
p la te .  
f igure 1l(a). 

The data from t h i s  run are  tabulated i n  tab le  V(f) and shown i n  

The experimental heat-transfer ra tes  are compared with heat-transfer 
rates predicted from the approximate methods described earlier. Figure 
U ( b )  shows how the wall-temperature dis t r ibut ion was  approximated by 
seven ramps and one step.  Again the predicted heat-transfer rates are 
i n  excellent agreement with the  predictions of the approximate method. 
The data  fo r  s t r i p  2 are low,  probably because the flow was not f u l l y  
turbulent over t h i s  s t r i p .  The heat-transfer rate predicted by use of 
the isothermal-plate re la t ion (38) i s  i n  considerable error,  especially 
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where the  wall temperature is changing rapidly. However, the  values a re  
of the same  order of magnitude, and it can therefore be concluded tha t  
the isothermal equation may be used t o  obtain a first estimate of the  
heat t ransfer  from nonisothermal surfaces. 

This same example has a l so  been t reated as a "prescribed-heat-flux" 
problem, using the approximate methods described e a r l i e r .  Figure 1 2 ( a )  
shows how the heat f lux was approximated by f ive  steps and six ramps. 
Figure 12(b) shows the temperature differences computed by the approxi- 
mate methods compared with the experimental temperatures. The agreement 
near the  leading edge is not too good, but t h i s  can be at t r ibuted t o  the 
approximations made on the  heat-flux distribution, and t o  the f ac t  tha t  
here the  flow may not have been fu l ly  turbulent. 
the predicted and experimental temperatures agree very well. 
dictions made from the isothermal equation (38) are  i n  considerable e r -  
ror, especially where the heat f lux is  changing rapidly. They are, how- 
ever, of the same order of magnitude, and thus it appears t h a t  the iso- 
thermal equation can a l so  be used t o  obtain a first approximation t o  the  
temperature difference in  a prescribed heat-flux problem. 

Farther downstream, 
The pre- 

Determination of Heat-Transfer Rates by Approximate Methods 

In  order t o  i l l u s t r a t e  the approximate methods for  handling pre- 
scribed wall-temperature problems, the "irregular" example described i n  
the preceding section w i l l  be worked out in  de t a i l .  
t h i s  run are shown in  figure 11. The prescribed temperature difference 
w i l l  be approximated by seven ramps and one Step, as i s  indicated by 
figure l l ( a ) .  

The t e s t  data f o r  

The first step i s  t o  determine the  location and slopes of the  ramps. 

n denotes 
The "break points" f o r  the  ramps and the temperature difference f o r  the 
step w i l l  be taken as indicated in  the following table,  where 
the number of the ramp s t a r t i ng  a t  an: 

~ 

end 

an 9 

f t  

0 
.70 

1.20 
1.82 
3.10 
3.50 
4 .OO 
4.80 

4 .O 
20.2 
11.4 

7 -6 
18.4 
24.6 
16 .7  
13.2 
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The slope of each component ramp may be determined readily, since the  
slope of the  approximate temperature dis t r ibut ion at any point is  simply 
the  sua of the slopes of a l l  ranrps s t a r t i ng  upstream. Therefore, f o r  
the  f i r s t  ramp, 

b- 

4.0 = 23.14 OF/ft 20.2 - ml = 0.70  - 0 

To f ind  the  slope of the second ramp, 

20*2 = -17.60 oF/ft 11.4 - 
1 .20  - 0.70  ml + m2 = 

m2 = -17.60 - 23.14 = -40.74 */ft 

Similarly, f o r  t he  t h i r d  ramp, 

7 .6  - 1 1 . 4  
ml + m2 + m3 = 1 . 8 2  - 1 . 2 0  = -6.13 */ft 

m3 = -6.13 + 40.74 - 23.14 = 11.47 */ft 

For the  fourth ramp, 

= 8.44 %/f t  18 .4  - 7.6  
3.10 - 1.82  Q + (-6.13) = 

m4 = 14.57 ?F/ft 

For the  f i f t h  ramp, 

24.6 - 1 8 . 4  
3.50 - 3.10 m5 + 8.44 = 

a5 = 7.06 OF/ft 

For the  s ix th  rarrrp, 

16.7 - 24.6 
4.00 - 3.50 % + 15.50 = 

= 15.50 OF/ft 

= -15.80 OF/ft 

d 
c 
c 
d 

% = 31.30 OF/ft 

Finally, for the  seventh ramp, 
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n an, 
f t  

16.7 = -4.37 */ft 13.2 - 
4.80 - 4.00 m7 + (-15.80) = 

mnJ 
OF/ft 

m7 = 11.43 oF/ft 4 

1 0  
2 
3 
4 
5 
6 
7 

In  addition t o  the seven ramps, the superposition involves a step of 
4 .Oo F at the leading edge, where Z1 = 0 .  Summarizing, 

.70 
1.20 
1.82 
3.10 
3.50 
4.00 

23.14 

11 .47  
14.57 
7.06 

11.43 

-40.74 

-31.30 

Steps 

4 .O 

A t  t h i s  point a check should be made. For 
the temperature dis t r ibut ion should be given by 

A t ( x )  = 4.0 + 2 3 . 1 4 ( ~  - 0) - 4 0 . 7 4 ( ~  - 0.70) + 1 1 . 4 7 ( ~  - 1.20) 

4.00 < x  < 4.80 f ee t ,  

+ 14.57(x - 1.82) + 7.06(x - 3.10) - 31.30(x - 3.50) + 11.43(x - 4.00) 

By subst i tut ing 
culated from t h i s  re la t ion  as 

x = 4.80 fee t ,  the temperature a t  the "end" may be cal- 

At(4.80) = 4.0 + 111.07 - 166.93 + 41.29 + 43.42 + 12.00 

-40.69 + 9.14 = 13.3O F 

This agrees with the  value that  exis ts  at 
the calculated ramp slopes close with the proper value, providing a 
check. 

x = 4.80 fee t ,  and therefore 

The calculation of the heat-transfer ra tes  can best be handled by 
tabular computation. 
r a t e  at  x = 3.5 f ee t  is  as follows: 

For example, the calculation of the heat-transfer 

F i r s t ,  tabulate the parameters of in te res t .  From the data, 
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mn 
23.14 

11.47 
14.57 

7.06 

-40.74 

x = 3.5 f t  A t  = 24.6O F 

G = 32,400 lb/(hr)(sq f t )  

p = 0.0439 l b / (h r ) ( f t )  

P 

P r  = 0.70 

T, = 528O R 

c = 0.24 Btu/(lb)(OF) Tw = 553O R 

Next, i n  a tabular manner, calculate the sums appearing i n  equation (27): 

A( %/X 1% 
3.12 

1.42 
1.63 

* 37 

-5 -30 

an 
0 

.70 
1.20 
1.82 
3.10 

2j 

0 

0 
.200 
.343 
.520 
.886 

2 ./x 
J 

0 

A(an/x ) 

0.135 
.130 
.124 
.112 
.053 

s ( 2 j /x ) 

0 

zA(%/x.)m, = 1.24 q / f t  

4.0 I 0 

c S (  Zj/x)b = 0' F 

Note tha t  only the r a p s  and steps s t a r t i ng  upstream of x are used i n  
these calculations. The functions A and S are determined from f ig-  
ure 4, which may be replotted from the values i n  table  111. The "effec- 
t ive"  temperature in  equation (29) is therefore 

= 24.6 + 3.5c1.24) + 0 

= 28.9' F 

The Reynolds number is  

R e x  = Gx/p = (32,300)(3.5)/0.0439 

= 2. 58X106 

The isothermal Stanton number 
as 

StT may be determined from equation (38) 



29 

StT = 0.0296(2 .58X106)'0*2(0.7)a0'4(553/528) -0.4 

= 0.00176 

Finally, the heat-transfer rate may be calculated from equation (30) as 

q" (3.5) = (32,300) (0.24) (0.00176) (28.9) 

= 394 Btu/(hr)(sq f t )  

Similar calculations may be repeated at  any point f o r  which the heat- 
transfer r a t e  is t o  be predicted. I n  making the predictions f o r  t h i s  
example, heat-transfer rates were calculated at  the s i x  "break points, I'  

the  "end" (4.80 f t ) ,  and a t  x = 0.4 foot.  
was s l igh t ly  less than 1 hour. 

The t o t a l  calculating time 

Determination of Wall Temperatures by Approximate Methods 

In order t o  i l l u s t r a t e  the approximate methods described e a r l i e r  
fo r  handling prescribed heat-flux problems, the  "irregular" example de- 
scribed earlier w i l l  be worked out i n  de ta i l ,  assuming the heat flux is 
known and the wall temperature i s  t o  be calculated. The data from t h i s  
run are shown in figure 1 2 .  
m t e d  by six ramps and f ive  steps, as i s  indicated by figure 1 2 ( a ) .  It 
w i l l  be assumed tha t  the heat-transfer r a t e  was constant from the  lead- 
ing edge, having a value equal t o  tha t  measured f o r  the  second s t r i p .  
This assumption w i l l  introduce some er ror  a t  the  start,  but the  boundary 
layer on the first s t r i p  is probably laminar o r  t ransi t ional ,  and thus a 
more accurate calculation is not possible. 

The prescribed heat f lux will be approxi- 

The first s tep is t o  evaluate the parameters in  the step-ramp ap- 
proximat ion. 
data points; at these points the  two adjacent s t r i p s  are separated by a 
th in  insulator.  The discontinuity and break-point locations are as 
follows : 

The heat -f lux discontinuities w i l l  occur midway between 

x, 
ft 

0- 
o+ 
.46- 
.46+ 
.so- . so+ 

1.10- 
1.1w 
1.70 
2.16- 
2.16+ 
3.00 
3.50 
3.88 
4.80 

0 
162.5 
162.5 
372.5 
372.5 
235.0 
235.0 
175.0 
110 .o 
110.0 
152.5 
280 .o 
400 .O 
245 .O 
130.0 
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First, the height of each step is calculated as follows: 

b l  = 162.5 - 0 = 162.5 Btu/(hr)(sq ft) 2 1  = 0 ft 

b2 = 372.5 - 162.5 = 210.0 Btu/(hr)(sq ft) 22 = 0.46 ft 

b3 = 235.0 - 372.5 = -137.5 

b4  = 175.0 - 235.0 = -60.0 Btu/(hr)(sq ft) 

b5 = 152.5 - 110.0 = 42.5 Btu/(hr)(sq ft) 

Btu/(hr)(sq ft) Z3 = 0.90 ft 

Z4 = 1.10 ft 

25 = 2.16 ft 

The slope of each ramp is calculated from equation (23):  

ml = (110.0 - 175.0)/(1.70 - 1.10) 
= -108.3 Btu/(hr)(cu ft) 

m2 f (-108.3) = (110.0 - 110.0) / (2 .16 - 1 . 7 0 )  = 0 

m2 = f108.3 Btu/(hr)(cu ft) 

m3 f 0 = (280.0 - 152.5)/(3.00 - 2.16) = 151.8 

m3 = 151.8 Btu/(hr)(cu ft) 

Q + 151.8 = (400.0 - 280.0)/(3.50 - 3.00) = 240.0 

m4 = 88.2 Btu/(hr)(cu ft) 

m5 + 240.0 = (245.0 - 400.0)/(3.88 - 3.50) = -407.9 

m5 = -647.9 Btu/(hr)(cu ft) 

m6 + (-407.9) = (130.0 - 245.0)/(4.80 - 3.88) = -125.0 

% = 282.9 Btu/(hr)(cu ft) 



d n n 
d 

3 1  

The foregoing calculations m y  be summarized as follows: 

I 

an, 
f t  

1.10 
1 . 7 0  
2.16 
3.00 
3.50 
3.88 

mn, 
Btu/(hr) (cu f t  ) 

108.3 
151.8 

88.2 

282.9 

-108.3 

-647.9 

.46 

.90 

2.16 

Steps 

bj ,  
Btu/(hd(sq f t)  

162.5 
210.0 

-137.5 
-60 .O 
42.5 

A t  th i s  point, it i s  desirable t o  make a check. 
heat flux i s  given by 

A t  x = 4.80 feet, the  

q"(X) = 162.5 + 210.0 - 137.5 - 60.0 + 42.5 - 108.3(4.80 - 1.10) 

+ 108.3(4.80 - 1.70) + 151.8(4.80 - 2.16) 

+ 88.2(4.80 - 3.00) - 647.9(4.80 - 3.50) f 282.9c4.80 - 3.88) 

= 130.0 Btu/(hr)(sq f t )  

This resu l t  agrees w i t h  the value of 
pears that  no errors  have been made i n  determining the b and m. 

q" at the "end," and thus it ap- 

The calculation f o r  the  temperature difference at various points on 
To i l l u s t r a t e  the method, 

x = 3.5 feet follows. 
the plate  can be handled i n  a tabular manner. 
the calculation f o r  the  temperature difference at  

F i r s t ,  tabulate the parameters of in te res t .  From the experimental 
data, 

x = 3.5 f t  

G = 32,400 lb/(hr)(sq f t )  

p = 0.0439 lb/ (hr)(f t )  

c P = 0.24 Btu/(lb)(OF) 

Pr = 0.70 

q" = 400 Btu/(hr) (sq f t )  

Next, i n  a tabular manner, calculate the sums appearing i n  equation (37): 
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0.041 
,055 
.070 
.080 
.133 

zj/x 

0 
.131 
.257 
.314 
.617 

162.5 6.66 
210.0 11.55 

-137.5 -9.63 
-60.0 -4.80 
42.5 5.65 

CbjH(Zj/x) = 9.43, 

Btu/(h)(sq ftZ 

Steps 
I 1 

an 

1.10 
1 .70  
2.16 
3.00 

an/x 

0.314 
.486 
.617 
.857 

I 

~ 4 

I 

Therefore, the effective 

0.116 -108.3 -12.56 
108.3 10.83 
151.8 12.90 

.043 88.2 3.79 

c%D(an/x) = 14.96 

x xm,D(an/x) = 52.36 Btu/(hr)(sq f t )  

heat flux q* is  

q* = 400.0 - 52.36 - 9.43 

= 338.2 Btu/(hr)(sq f t )  

The Reynolds number i s  

Rex = Gx/p = (32,300)(3.5)/0.0439 

= 2.58X106 

The isothermal Stanton nmber may be determined from equation (38). 
However, since the temperature i s  not known, the fluid-properties correc- 
t i on  factor  ( T ~ / T ~ )  - O a 4  cannot be evaluated. 
correction, which may be neglected without serious e r r o r .  

StT 

This is ,  however, a small 
Thus, 

StT = 0 .02 96 ( 2 . 58X106 -O * (0.7 -O * 

= 0.00179 

tP 
(D 
CD 
tP 
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Finally, the  temperature difference may be calculated from equation (36): 

At (3.5) = 338.2/( 32,300) (0.24) (0.00179) 

= 24.4O F 

Similar calculations may be repeated at each point f o r  which the tempera- 
ture difference i s  desired. One must be careful, however, at the steps.  
Just upstream of a s tep  (x = 27), the  s tep should not be included i n  the  
calculation. But j u s t  downstream of the  step (x = Z;), the  s tep must be 
included, or else the  computations would indicate a discontinuity i n  the 
wall temperature. Note that use of the  isothermal equation (38) t o  pre- 
d ic t  the  temperature leads t o  considerable e r ro r  i n  heat f lux at t h e  
steps where th i s  re la t ion  indicated a discontinuity i n  the w a l l  tempera- 
ture. However, the  isothermal equation i s  useful f o r  an order-of- 
magnitude check on. the  calculations. 

3 

SUMMARY OF RESULTS 

The good agreement between predicted and measured values of both 
heat-transfer rates and temperature dis t r ibut ions f o r  the variety of 
s i tuat ions shown i s  believed t o  substantiate the  present theory f o r  non- 
isothermal surfaces en t i r e ly  adequately. Consequently, theory should be 
suf f ic ien t ly  accurate t o  predict  heat t ransfer  from nonisothermaJ- sur- 
faces i n  v i r tua l ly  any similar type of s i tuat ion.  

The re su l t s  a l so  show that the usual correlation f o r  the  heat- 
transfer rates, that i n  the solution f o r  the isothermal surface, i s  i n  
f a i r  agreement with the data i n  a l l  cases except where rapid changes i n  
wall temperature or heat f lux  occur. Hence, i n  many cases the  simpler 
isothermal equations can be used t o  obtain a first approximation f o r  the 
heat-transfer rates (or temperature differences),  even though the  surface 
is  not isothermal. 

I n  cases where rapid changes i n  wall tenrrperature occur, where a 
fract ion of the surface i s  adiabatic, or where high accuracy is  required, 
the nonisothermal theory should be used. In  these situations,  the  ap- 
proximate methods presented herein provide a simple, rapid computation 
method of good accuracy f o r  the prediction of the temperature distribu- 
t i on  or heat-transfer rates f o r  any a r b i t r a r i l y  prescribed conditions. 

Stanford University, 
Stanford, Calif., October 22, 1957. 
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.7 

.8 
a 9  
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-2 
.U 

G 
0" 
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TABLE I. - INCOMPLETE BETA FUNCTIONS FOR TURBUL;ENT 

NONISOTBERMAL HEAT TRANSFER 

J o  J 

0 . 1518 
.2948 
-4457 
-6109 . 7971 

1 . 0151 
1.2833 
1 a 6412 
2.2089 
9.1853 

r 

0 . 01 . 02 . 03 . 04 
.05 
.06 . 07 
a 08 
-09 . 10 

0 
5.3960 
5 . 8286 
6.0979 
6.2967 
6.4555 
6.5883 
6 . 7029 
6 . 8039 
6 -8943 
6.9764 

0 . 1445 . 2661 
.3792 
-4863 . 5886 
.6864 
,7797 . 8682 . 9505 

1 . 0206 

0 
5 . 3948 
5.8260 
6.0938 
6.2910 
6.4482 
6.5794 
6.6923 
6.7916 
6 . 8802 
6 . 9604 

0 
6 . 9604 
7.5087 
7.8447 
8.0886 
8.2796 
8.4357 
8 -5664 
8.6772 
8.7702 
8.8439 

0 
5.3887 
5.8131 
6,0735 
6 . 2631 
6.4125 
6,5357 
6.6406 
6.7316 
6 . 8119 
6.8837 

0 
6.8837 
7 . 3445 
7 5898 
7 . 7414 
7 . 8401 
7 . 9046 
7.9456 
7.9694 
7.9809 
7.9839 
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TABLF: 11. - S-Y OF TURBUIXNT NONISOTHERMAL I.IEAT-TRANSFER 

SPEC1 F CATION 
ARBITRARY TEMPERATURE 

x 0 

ARBITRARY HEAT FLUX 

4y-d- 

A t l - 7 7 _ x  0 

0 X 

CONSTANT TEMPERATURE 

STEP TEMPERATURE 

I A:kx 
RAMP TEMPERATURE 

CONSTANT TEMPERATURE- 
ADIABATIC WALL 

CONSTANT HEAT INPUT 

RAMP HEAT INPUT 

stT= 0.0296 P i C  

SOLUTIONS FOR A FLAT PLATE 

TEMPERATURE HEAT FLUX 

-119 
A t  At(x1 

d'= q"(x) 

A t =  b 91'' GcpSt b 
T 

At = O  X l 2  

A t =  b xrt 

At = 0 X ( 0  

A t =  rn (x -a )  x2a 

A t  = b x <a 

x z a  At = 0.1084 b B,(819,1/9) 

q " = G C p S t T  b X<a 

qa:o 

q"=o X a  A t = 0  

r 
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c 

TABLE 111. - FUNCTIONS FOR PRESCRIBED 
TEMPERATURE: CALCULATIONS 

0 
01 
.2 
03 
.4 
.5 
.6 
07 
.8 
09 
1.0 

0 . 135 . 133 . 130 
.l26 
.121 . 113 
.lo3 . 100 
074 

0 
.1 
*2 
03 
.4 
.5 
.6 
07 
.a 

s(z/x) 

0 
015 
.030 
,047 . 066 
.089 
-116 
152 . 208 
.300 
OD 

TABLE IV. - FUNCTIONS FOR PRESCRIBED 
HEAT-FLUX CALCULATIONS 

0 
.1 
02 
03 
04 
05 
.6 
07 
.8 
09 
1.0 

0.135 
.130 . 124 
,117 . 109 . 099 
.087 . 072 . 056 
.033 
0 

0 
01 
.2 
.3 

05 
.6 
07 
.8 
-9 
1.0 

04 

0.041 . 050 . 056 
.078 
-092 . 110 . 130 . 158 
-194 
256 

1 . 000 
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TABLE V. - Concluded. EXPERIMENTAL HEAT-TRANSFER DATA 

1 I I  
( c )  Step-ramp temperature distribution 

= 73.3' F; p- = 0.0743 lb/cu ft.] [t 

(b) Double-step temperature distribution 

[t- = 72.5' F; p, = 0.0746 lb/cu ft.1 
- 

1.81 
2.42 
2.39 
2.37 
2.36 
2.32 
2.22 
2.29 
2.08 
1.98 
2.07 
2.07 
2.06 
2.00 
2.01 
1.99 
1.93 
1.97 
1.97 
1.94 
1.77 
1.82 

32.9 12.4 181.3 
32.9 11.8 219 
32.9 11.8 207 
32.9 12.0 206 
32.9 12.1 204 
32.9 12.3 197.7 
32.9 12.3 196.0 
32.9 12.1 192.2 
32.9 12.2 196.3 
32.9 23.2 398 
33.0 22.8 388 
33.0 23.1 370 
33.1 23.2 365 
33.0 23.5 355 
33.0 23.5 355 
33.1 23.6 348 
33.0 23.5 340 
32.9 23.7 337 
32.8 23.7 338 
32.8 23.8 329 
32.9 24.0 306 I 32.9 24.1 319 

14.62 
18.58 
17.57 
17.19 
16.88 
16.07 
15.94 
15.69 
16.09 
17.13 
17.03 
16.00 
15.74 
15.09 
15.11 
14.76 
14.11 
14.20 
14.27 
13.80 
12.76 
13.21 

32.0 
32.0 
32.0 
32.9 
32.0 
32.0 
32.0 
32.0 
32.0 
32.0 
32.0 
32.0 
32.0 
31.9 
32.0 
32.0 
31.9 
32.0 
31.8 
31.8 
31.9 
31.9 

87.2 
131.6 
144.4 
162.3 
178.2 
192.3 
200 
221 
223 
226 
242 
269 
280 
285 
307 
319 
328 
346 
358 
363 
353 
373 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 21 

22 
23 - 

__ 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 - 

- 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 20 

22 23 
21 

- 

2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
- 

- 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
- 

1.013 
1.164 
1.314 
1.469 
1.618 
1.770 
1.927 
2.08 
2.22 
2.37 
2.53 
2.67 
2.83 
2.96 
3.11 
3.28 
3.43 

(d) IBothermal plate followed by adiabatic wall (e) Pulse heat input 

= 0.0747 lb/m ft.1 = 0.0757 lb/cu ft.] [t- = 70.8' F; p 

26.4 
26.4 
11.6 

4.9 
4.4 
4.0 
3.7 
3.4 
3.2 

[t = 66.3O F; p 

27.0 
27.0 
27.0 
27.0 
27.0 
27.0 
27.0 
27.0 
27.0 
27.0 
27.0 
27.0 
27.0 
27.0 
27.0 
27.0 
27.0 
27.0 
27.0 
27.0 
27.0 
27.0 

9.77 
14.22 
15.57 
15.00 
14.60 
14.10 
13.62 
13.71 
12.66 
12.12 
12.38 

0 
0 
55.4 
328 
367 
370 
360 
316 
33.5 
0 
0 
0 
0 
47.5 
314 
357 
362 
360 
363 
365 
353 
358 

_ _ _ _  0.257 _ _ _ _  
_ _ _ _  _ _ _ _  

1.540 
1.691 
1.850 

3.27 

33.3 
33.2 
33.2 

_ _ _ _ _  
19.03 
18.04 
17.06 
16.44 
16.36 
15.94 
14.47 
14.80 

1.879 

bution (f) Irregular wall-temperature dist 

[t, = 67.5' F; p, = 0.0761 Ib/cu ft.1 

2.05 2.07 0.252 
2.69 2.73 .414 
2.41 2.43 .567 
2.14 2.17 ,720 
1.85 1.86 ,874 
1.66 1.69 1.028 
1.74 1.75 1.181 
1.70 1.71 1.338 
1.66 1.67 1.488 
1.98 2.00 1.647 
1.97 1.99 1.794 
2.06 2.09 1.957 
2.08 2.11 2.10 
2.02 2.05 2.26 
2.09 2.16 2.42 
2.08 2.12 2.58 
1.83 1.87 2.72 
1.67 1.69 2.88 
1.67 1.69 3.01 
1.57 1.59 3.16 
1.38 1.40 3.33 T 1.32 1.33 3.45 

164.8 
368 
376 
235 
164.3 
130 .O 
117.2 
105.4 
112.6 
169.2 
191.1 
236 
266 
287 
354 
398 
313 
232 
208 
188 
154 
128 

15.84 
20.8 
18.62 
16.56 
14.29 
13 .OO 
13.47 
13.18 
12.79 
15.38 
15.28 
16.02 
16.10 
15.69 
16.22 
16.17 
14.21 
12.94 
12.89 
12.10 
10.70 
10.18 

32.2 
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Figure 2. - Incomplete be ta  functions f o r  turbulent nonisotinemal heat t ransfer .  
r 

Beta function Br(a,b) = za-’(1 - z ) ~ - ’  dz. 
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Figure 11. - Prescribed temperature treatment of irregular example. 
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